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Mounting evidence indicates an involvement of inflammation in the pathogenesis 

of Alzheimer’s disease. While there are other mechanisms involved, it is this role of 

inflammatory processes that we wish to investigate. Triptolide is the major constituent in 

the Chinese herb, Tripterygium wilfordii Hook F, and has been used for centuries as part of 

Chinese herbal medicine. The four ringed structure has close homology to drugs of the 

steroid class and it has been shown to be beneficial as an anti-inflammatory for rheumatoid 

arthritis and for treatment of certain cancers. The aim of this study was to evaluate the 

potential therapeutic effect of Triptolide on the neuropathology and deficits of spatial 
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learning and memory in amyloid precursor protein (APP) and presenilin 1 (PS1) double-

transgenic mice, a well established Alzheimer’s disease (AD) mouse model. After 

treatment of APP/PS1 mice with Triptolide (40µg/kg, three times weekly,), initiated when 

the mice were 5 months old, for as little as 8 weeks, significant decrease in β-amyloid (Aβ) 

deposition and microglia activation was observed. Moreover, Triptolide treatment robustly 

rescued spatial memory deficits observed in APP/PS1 mice. However, APP processing, tau 

hyperphosphorylation, and the activities of the two major kinases involved in tau 

hyperphosphorylation, cyclin dependent kinase 5 (cdk5) and glycogen synthase kinase 3β 

(GSK3β) were not affected by the Triptolide treatment. Based on the recent finding for the 

inhibitory effect of Triptolide on Aβ-induced production of pro-inflammatory cytokines 

from microglia, we propose that Triptolide treatment may have beneficial properties in 

halting glial activation and help restore an immune system that fights plaque deposition. 

Although the exact mechanism of action has yet to be deduced, the increase in APP CTFs 

while having a significant decrease in amyloid plaque deposition suggests that alterations 

in gamma secretase activity may be a possible answer. Currently, these results support the 

use of Triptolide as an effective therapeutic to prevent the progression of Alzheimer’s 

disease. 

 

Key words: Alzheimer’s disease, triptolide, APP processing, microglia, astrocytes 
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Introduction 
 

 

Today, Alzheimer’s disease (AD) is the number one cause of dementia in the 

elderly. Dementia refers to a progressive decline in cognitive function due to neuronal 

damage that is unlike the normal aging process. As of now, there is no cure and the 

degeneration of neurons coupled with secondary complications from sedentary behavior 

will eventually lead to the death of the patient. It was first described by Alois Alzheimer in 

1901, a German psychiatrist who described his patient as having symptoms of strange 

behavior and short-term memory loss. Subsequent examination of the patient’s brain 

showed amyloid plaque deposition and neurofibrillary tangles, two major hallmark 

pathologies associated with AD. Current treatments consist of acetylcholinesterase 

inhibitors (donepezil, galantamine, rivistigmine) and the drug memantine, which is an 

NMDA receptor antagonist. The NMDA receptor is an ionotropic glutamate receptor 

which when activated will open and allow the flow of cations in and out of the cell. 

Synaptic plasticity plays an important role for learning and memory and calcium flux 

through the NMDA receptor upon activation is thought to be critical in this process. It is 

well known that AD brains show a reduction in cholinergic neuron activity due to 

degeneration of these neurons, thus acetylcholinesterase inhibitors are used to increase the 

concentration of acetylcholine in the brain, thereby maintaining the activity of cholinergic 

neurons. Although hotly debated, some believe that excitotoxicity from excess glutamate is 

also a feature of AD and memantine’s activity at NMDA receptors blocks this 
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overstimulation from glutamate. These drugs represent symptomatic treatments, not 

mechanistic or cause-based treatment and thus have no indication for delaying or halting 

the progression of neurodegeneration. As a side note, part of memantine’s controversial 

mechanisms of action are a result of some clinical trials showing that patients receiving 

memantine retained cognitive functions longer than those not taking it, suggesting a delay 

in the progression of AD. 

 The need for a definitive treatment that has the ability to halt or delay further 

neurodegeneration cannot be emphasized enough. Currently, there are approximately 5 

million cases of AD in the United States, costing over $350 billion per year. These 

numbers are expected to escalate to over 15 million cases at a cost of over $1 trillion per 

year by 2050.  This is predicted because the average lifespan has more than doubled since 

1840 and furthermore, we face increasing numbers of people over the age of 65 that 

require more and more medical care (Figure 1). If nothing is done to reverse and/or treat 

this disease, we face an epidemic of neurological diseases that encompass not only AD, but 

Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), and many more.  
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Percentage of Older Adults who have Alzheimer's Disease, by Age 

 

 

Figure 1 Chart reflecting the percentage of adults in the United States who have AD. As the age of the 
population increases, the chances of developing AD increases exponentially. 

 

 (Figure from http://aspe.hhs.gov/health/Reports/medicalinnovation/, US Dept. of HHS) 

 

APP Processing and the Amyloid Hypothesis 

Aβ plaque deposition begins when the amyloid precursor protein (APP), a type I 

transmembrane glycoprotein, undergoes endoproteolytic cleavage by β-site APP cleaving 

enzyme 1 (BACE1, β-secretase), producing a secreted ectodomain of APP and the C99 

membrane-bound fragment of the remaining APP protein. The C99 fragment becomes the 

substrate for subsequent cleavage by another protease, γ-secretase, which produces the 

carboxyl terminus of Aβ and subsequently, the mature peptide is secreted from the cell to 

aggregate with other Aβ peptides to form amyloid plaques. The cleavage by γ-secretase is 
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not always specific and will produce fragments that vary in their amino acid length. 

However, the majority of fragments produced by γ-secretase contain either 40 or 42 amino 

acids, referred to as Aβ40 and Aβ42. It has been shown that insoluble, oligomeric Aβ40/42 

(Jiao, Xue et al. 2008) is more pathologically relevant to the degenerative effects of AD 

than other monomers and oligomers of different lengths.  Another enzyme involved in 

APP processing, α- secretase, cleaves APP in the middle of the Aβ domain which 

precludes the formation of Aβ plaques. This can be considered ‘normal’ APP processing 

and is referred to as the non-amyloidogenic pathway in APP processing (Vassar 2002). 

The importance of BACE1 in the progression of AD is that it has been identified as the 

first enzyme that cleaves the APP protein and results in an increase in Aβ deposition. This 

may be the initial cause which “gets the ball rolling” in a pathological state. Indeed, the 

introduction of BACE1 siRNA through lentiviral vectors has been shown to ameliorate AD 

pathologies and neural deficits in vivo (Singer, Marr et al. 2005). 
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Figure 2 Diagram of APP processing. In the amyloidogenic pathway, sequential cleavage of APP by BACE1 
and γ-secretase yields fragments of Aβ 40 and 42, referring to the amino acid length. These dimerize and 
oligomerize into amyloid plaques. 
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Figure 3 In the non-amyloidogenic pathway, APP is sequentially cleaved by α-secretase followed by γ-
secretase which yields CTFs and AICD. The cleavage of APP is within the Aβ domain which precludes the 
formation of Aβ plaques. This can be thought of as the “normal” processing of APP. 

 

Until recently, the amyloid hypothesis was by consensus the leading theory on which the 

research community based their work around. It allowed scientists to focus on a specific 

set of pathologies that could possibly yield therapeutic breakthroughs. Part of the reason 

that there has been some malcontent among the scientific community regarding the 

amyloid hypothesis revolves around the thought that all amyloid oligomers and plaques are 

toxic. While Aβ oligomers are clearly implicated in synaptic interruption, it is difficult to 

definitively say that Aβ is toxic to neurons since no convincing data has yet to be 

presented. Also, reports of successfully clearing of Aβ plaques from mice brains using 

immunization techniques does not clearly indicate the effects of Aβ on behavioral changes 
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(Schenk, Barbour et al. 1999). As far as clinical success with immunization techniques, it 

was concluded that although successful clearance of Aβ can be achieved, the end result of 

a rescue in cognitive function was not guaranteed since late stages of the disease are 

irreversible. However, administration of a vaccine or antibodies early in the disease 

progression could offer hope in delaying or halting the neurodegeneration (Boche, Zotova 

et al. 2008; Hardy 2009). Finally, there is a possibility that a double hit hypothesis is 

implicated more in onset of late-onset Alzheimer’s disease (LOAD). It provides a cause for 

how neurodegeneration induced by tau hyperphosphorylation appears in LOAD. But, it 

still leaves fundamental questions about the relationship between APP/Aβ and tau protein 

(Hardy 2009).  

 

Tau hyperphosphorylation 

Tau is a microtubule-associated protein abundant in neurons of the CNS and helps 

maintain normal neuronal functions, such as axonal transport and neuron stabilization. The 

components of microtubules are globular proteins called tubulins that weigh roughly 

55kDa. The tubulins come in many forms but the most common forms are the α-tubulins 

and β-tubulins. The interaction of tau with these tubulins helps stabilize the microtubule 

structure and promote its assembly within the cell. This is beneficial because it permits 

neurite expansion. The phosphorylation of tau results in the destabilization of the 

microtubule assembly. This results in a breakdown of microtubules that are necessary 

stages in many cell cycle functions, including cell division and mitosis. In Alzheimer’s 

disease, one of the major hallmark pathologies are aberrant structures of intracellular 
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neural tangles of hyperphosphorylated tau called neurofibrillary tangles (NFTs). NFTs are 

composed of tau proteins which aggregate to form structures called paired helical filaments 

(PHFs) (Maccioni, Munoz et al. 2001). These are the components to NFTs. 

Phosphorylation of tau occurs at more than thirty different serine/threonine residues in the 

AD brain by several kinases. Proline-directed kinases include GSK3β, CDK5, p38/MAPK, 

and JNK. Non-proline directed kinases include PKA, PKC, CaMKII, and MARK (Avila 

2006). Major focus has been towards GSK3β since this kinase has been extensively studied 

and characterized under pathological conditions. In familial Alzheimer’s disease (FAD), 

there are several mutations in genes that code for proteins clearly implicated in the 

facilitation of AD pathologies.  These include APP and the presenilin proteins, PS-1 and 

PS-2. Missense, deletion, and silent mutations in these genes have each been shown to 

result in the corresponding protein’s inability to bind protein phosphatase 2A, an enzyme 

responsible for the dephosphorylation of tau (Goedert, Satumtira et al. 2000). 

Consequently, the reduced ability to dephosphorylate results in a constitutively 

phosphorylated state of the tau protein, which leads to accumulation of NFTs. 
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Figure 4 Tau hyperphosphorylation begins when the microtubule associated protein tau is phosphorylated by 
several kinases which results in microtubule disassembly and concomitant aggregation of 
hyperphosphorylated tau. These form the intracellular NFTs which are neurotoxic. 

 

Amyloid deposition or Tau hyperphosphorylation? 

It is still unclear which major hallmark pathology is implicated to exert the more 

significant cognitive and memory deficits on the diseased brain in Alzheimer’s disease. 

The leading hypotheses have been narrowed down to amyloid plaque deposition and 

neurofibrillary tangles (NFTs). In the disease itself, the formation of NFTs strongly 

correlates with cognitive dysfunction, whereas amyloid plaque deposition does not produce 

cognitive dysfunction alone. Briefly, it has been studied and reported in a transgenic mouse 

model that tau phosphorylation plays an important and beneficial role in learning and 

memory and that only when tau becomes hyperphosphorylated does the cognitive decline 
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associated with AD and dementia begin (Boekhoorn, Terwel et al. 2006). A study 

published in the Journal of Neurochemistry in 2008 studied the temporal correlation 

between memory deficits and the activation of glycogen synthase kinase-3β (GSK-3β), 

which is a major kinase involved in tau phosphorylation and APP phosphorylation. The 

phosphorylation of these proteins facilitates the onset of the two major AD pathologies 

described above. The authors induced memory deficit and GSK-3β activation using 

WT/GFX, which has already been shown to induce spatial memory loss, and observed a 

time dependent correlation with GSK-3β activation and memory deficit (Wang, Zhang et 

al. 2008). Also, there was an increase in tau hyperphosphorylation that correlated with the 

memory deficit, but amyloid plaque deposition was not changed. Further, the amyloid 

plaque deposition increased after the memory deficits were regained by the injected mice. 

In this situation, these data suggest that tau hyperphosphorylation may be more important 

in AD-like memory deficits.  

As stated above, the phosphorylation and dephosphorylation of tau is a normal 

process in cell function and is important in microtubule assembly/disassembly and axonal 

transport.  If this process is natural to the living cell, then something must alter kinase and 

phosphatase functions involved with tau regulation. In another study, the authors sought to 

determine how tau might become hyperphosphorylated. They showed that aberrant 

glycosylation of tau proteins results in their becoming better substrates for major kinases 

involved in AD, such as CDK-5 and GSK-3β. The more efficient enzyme-substrate 

kinetics involved in tau hyperphosphorylation seems to be a possible answer because the 
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increase in tau phosphorylation does not correlate with an increase in CDK-5 and GSK-3 

expression in AD brains.  

Amyloid plaque formation is a somewhat ambiguous pathological hallmark but it is 

believed to be heavily involved in AD progression. There have been many studies showing 

that amyloid plaque formation occurs ahead of dementia and cognitive decline but this may 

be due to the eventual collapse of neurotrophic factors in the brain, including amyloid 

degrading enzymes and glial activation to remove the accumulated proteins. Also, the 

formation of amyloid does not always result in AD and may not even exert any form of 

mild cognitive impairment throughout the lifetime of affected individuals. But, the fact still 

remains that the presence of extracellular plaques disrupt neuronal synaptic connections 

and can induce a chronic inflammatory response, a situation in which neurotoxic 

chemokines and cytokines destroy neurons and their connections in the affected areas.  

Presenilin 1 is a subunit of the gamma secretase complex which facilitates amyloid 

processing into insoluble fragments that aggregate into the amyloid plaques. Genetic 

inactivation of the PS1 subunit in transgenic mice resulted in a substantial decrease in Aβ 

peptides and plaque formation (Saura, Chen et al. 2005). This in turn, resulted in a brief 

rescue in spatial memory and learning. However, the rescue in cognitive effects only 

occurred temporarily in short term PS1 inactivation as opposed to long term inactivation 

(Saura, Chen et al. 2005). Interestingly, there is increasing evidence that other biological 

systems are heavily involved in AD progression other than the usual players (i.e. PS1, 

APP, secretases, etc.) The tumor necrosis factor death receptor 1 (TNFR1) has been 

implicated in the regulation of BACE1 and thus regulates amyloid plaque deposition. He et 
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al.used mice lacking the TNFR1 receptor and showed that the amount of plaque generated 

was significantly reduced. In correlation with the decrease in Aβ, the learning and memory 

deficits usually attributed to mice in an AD model were prevented and rescued (He, Zhong 

et al. 2007). This evidence further supports the suggestion that amyloid protein generation 

is the main cause of memory and learning deficits associated with AD. So, if the amyloid 

protein seems to be relevant to the issue of memory and cognitive deficits, although this is 

not proven yet, it is vitally important to know how and why this is occurring as opposed to 

just what is causing it. It has been proposed that the reason amyloid plaque deposition does 

not correlate well with cognitive decline is because the deposited plaque is less of a threat 

to synaptic connections than soluble Aβ-derived oligomers and also, the memory 

impairments can occur before any amyloid plaque deposition is observed. Briefly, the best 

correlation for AD related dementia is to observe the synaptic density and to compare it 

with non diseased brains and it is this loss in synaptic density explains the memory loss 

seen in AD patients. Lacor et al provided evidence to support the idea that the soluble 

oligomers of APP can initiate neurotoxic mechanisms in cultured neurons, and thereby 

result in abnormal and dysfunctional dendritic spines in the synapse. The authors used 

highly differentiated hippocampal pyramidal neurons and exposed the soluble Aβ 

oligomers to them. The results were that less expression of memory-related receptors, such 

as NMDA, occurred after exposure and that the dendritic spine morphology began to 

resemble spines seen in other cognitive related diseases (Lacor, Buniel et al. 2007). In 

addition, a study of all-trans retinoic acid (ATRA) as a potential therapeutic for treating 

AD has shown that ATRA can attenuate amyloid plaque deposition by inhibiting cdk5 and 
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BACE1, both heavily involved in APP processing (Ding, Qiao et al. 2008). The inhibition 

of cdk5 and GSK-3β also results in the decerease in tau hyperphosphorylation at multiple 

epitopes. In the Morris water maze test of the treated mice, the spatial memory deficits 

were comparable to those of wildtype, while the untreated APP/PS1 mice displayed a 

profound loss of memory and no ability of spatial memory retention. These results suggest 

the idea that although tau hyperphosphorylation and amyloid plaque deposition have 

different etiologies, they are both significantly connected in AD. Treatment in the future is 

almost certain to combine some form of control over kinases involved, thus allowing a 

measure of control over both tau aggregation and APP processing. 

 

Genetics of Alzheimer’s disease 

There are two forms of AD; early onset, also known as familial AD (FAD), and late 

onset AD (LOAD). FAD occurs in less than five percent of the cases of AD, whereas late-

onset comprises the majority of AD cases. Both forms share very similar characteristics 

such as plaque formation, NFT formation, and similar distribution throughout the brain 

even though the genetics involved are as different as night and day. Since the 

groundbreaking achievement of mapping the human genome, it has become ever clearer 

that genetics play an important role in the onset of Alzheimer’s disease, especially familial 

AD. The human genome consists of roughly 30,000 genes. Within these genes, there are 

sequences of nucleic acids that contain the instructions to create proteins. Any alteration or 

mutation in this sequence can cause abnormal proteins to form and over time the build up 

of these abnormal proteins can cause disease. The genes involved with AD pathogenesis 
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are prevalent in early onset AD (familial AD) and manifest as an autosomal dominant form 

of inheritance. In familial AD cases, identification of the genes involved was narrowed to 

three: amyloid precursor protein (Goate, Chartier-Harlin et al. 1991), presenilin 1 

(Sherrington, Rogaev et al. 1995), and presenilin 2 (Levy-Lahad, Wasco et al. 1995). 

Mutations in these genes have been confirmed to intiate APP processing at an earlier age 

and have come to be known as Swedish mutations, referring to the people whom these 

genes were identified from. Although the discovery of these three genes were 

indispensable in furthering the etiology of AD, more and more evidence has pointed to a 

myriad of effects that contribute to late-onset AD which comprises almost 95% of all AD 

cases. In late-onset AD, the overexpression of APOE ε4 has been shown to be linked to a 

four-fold increase in developing AD (Strittmatter, Weisgraber et al. 1993). This gene is 

heavily involved with cholesterol levels and consequently, incidences of heart disease are 

also increased with the increase in risk of AD.  

Figure 5 describes the APP gene on chromosome 21. Mutations in the APP gene 

can result in cleavage and accumulation of the abnormal Aβ peptide which will lead to 

aggregation and formation of toxic neuritic plaques. It is also interesting to point out that 

aberrant expression of chromosome 21 (i.e. Trisomy 21, Down syndrome) in patients 

reveal a development of pathological hallmarks associated with AD. These include 

amyloid plaques, NFTs, and neuronal loss. The deposition of amyloid plaques occurs at an 

early age in Down syndrome patients and in late-onset AD patients, which further supports 

the notion that Aβ deposition precedes and may enhance other pathological changes. 
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Figure 5 Schematic drawing of APP and Aβ. The vertical dashed lines represent the single membrane 
spanning domain and the Aβ domain is represented by the solid black box. The lower drawing shows the 
amino acids of Aβ domain with the cleavage sites. 

 
(figure from http://www.scielo.cl/fbpe/img/rmc/v129n5/img14-01.gif) 

 

Inflammatory Hypothesis 

In most cases, the early symptoms of AD manifest through subtle losses in short 

term memory and gradually progress to total inability to recall any memory and dementia. 

What is interesting is that the formation of NFTs and amyloid plaque deposition do not 

account for every symptom associated with AD, especially in the early stages where 

neurodegeneration is not evident (Heneka and O'Banion 2007). One important facet of AD 

is the undisputed changes in inflammatory mechanism in the CNS that have been shown to 

facilitate the progression of AD symptoms. While it is true that all aging brains show signs 

of neuroinflammation, the diseased brain exhibits a much more profound case of activated 
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glial cells and inflammation (Heneka and O'Banion 2007). Amyloid plaques are diffusely 

covered with activated microglia and astrocytes. These glial cells, when stimulated, release 

several pro-inflammatory cytokines, chemokines, and complement that include TNF-α, IL-

1β, and various free radicals (Griffin, Sheng et al. 1998). While the initial inflammatory 

response to foreign antigens and wound healing changes are an important component of 

CNS health, the chronic overstimulation and activation of the glial cells contributes to 

neuronal dysfunction. Once these stimulators of glial cells begin, it creates a perpetual 

cycle of neuronal death that is difficult to impede (Abbas, Bednar et al. 2002)( Figure 6). 

In brief, it has been reported that fibrillar Aβ interacts with the lipopolysaccaride receptor, 

CD14, which causes the cell to secrete proinflammatory cytokines that in turn activate 

resident microglial cells in the brain (Fassbender, Walter et al. 2004) (Yan, Zhang et al. 

2003). Even more compelling is the report that microglia can kill neurons damaged by Aβ 

in a CD14 dependent process (Bate, Veerhuis et al. 2004). There is still much more work 

to be done in elucidating the exact mechanisms involved with immune system activation 

and response in relation to amyloid plaques because the role of fibrillar versus non-fibrillar 

Aβ and other forms have not been completely characterized. But, the significance of a 

specific receptor involved with Aβ signaling represents strong evidence that the innate 

immune response is an important player in the progression of AD.  

 Microglia are the resident macrophages within the CNS and play an important role 

in quick responses to foreign antigens, tumor invasion, and other forms of tissue injury. 

Representing roughly 10% of all cells in the CNS, they become activated and migrate in 

and around damaged cells to remove cellular debris and other protein fragments, such as 
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Aβ, through phagocytosis (Fetler and Amigorena 2005) (McGeer, Itagaki et al. 1988). In 

the case of AD, it has been shown that products of APP processing can activate glial cells 

and if this processing is inhibited, there is a corresponding decrease in glial activation 

(Schubert, Morino et al. 2000). As previously stated, the initial activation of microglia 

represents the body’s reaction to a neurotoxic stress, and the microglia’s ability to clear Aβ 

through phagocytosis is beneficial in that plaque deposition may be reduced (Yan, Zhang 

et al. 2003), although Landreth et al has shown that the same receptors responsible for 

phagocytosis cause super-oxide damage (Koenigsknecht and Landreth 2004) which 

contributes to neurotoxicity. Further, if chronically over activated, the constant release of 

cytokines initiates a perpetual cycle of neuronal death that will eventually overwhelm and 

destroy neuronal cells. This is the aspect of inflammation that is the target of therapeutics. 

If the chronic inflammatory state can be inhibited, then perhaps the beneficial aspects of 

microglial clearance and degradation can be enhanced and tip the balance of amyloid 

accumulation into a less damaging case.  

 Similar to microglia, the astrocytes have been shown to be able to clear amyloid 

plaques as well as provide neurotrophic support to neurons (Koistinaho, Lin et al. 2004) 

but this area is still debatable. They become over activated as well in a chronic 

inflammatory state. As is the case in microglia, it is not definitive that amyloid plaque 

deposition alone is enough to initiate this inflammatory response because it has been 

shown that activated astrocytes can occur in AD brains in the absence of amyloid 

deposition (Nunomura, Perry et al. 2001) since they respond to any neuron damage 

(Damiani and O'Callaghan 2007). Much work is being done now to discern the true cause 
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of glial activation in AD brains and whether or not this initiates APP processing or vice 

versa.  

 The human immune system is a complex network of mediators. The system as a 

whole must be taken into account when trying to deduce a mechanism of neuronal toxicity. 

Chemokines, cytokines, and other mediators such as complement can exert beneficial as 

well as detrimental effects on the CNS. For example, cytokines such as TNF-α and IL-1β 

have been shown to be able to suppress long term potentiation (LTP), a key process in 

memory formation, without damaging the neurons structurally (Tancredi, D'Antuono et al. 

2000). Neurons communicate via chemical neurotransmitters in the synapse, and this is 

believed to be the underlying basis for memory formation. Although the mechanisms are 

still being worked out, LTP functions by strengthening synaptic connections which can 

strengthen and retain learning and memory skills. This clearly shows how mediators of 

inflammation may exert the detrimental effect well before any sign of neuronal loss is 

observed (Heneka and O'Banion 2007). It is a balance of these molecules that is desired to 

create a “homeostatic” state where the body eliminates toxic antigens and promotes 

neuronal integrity. Inflammation is a key process in AD pathogenesis; there is more 

inflammation in the AD brain than in a patient after knee replacement surgery. Interference 

in the process of glial activation is a novel target of drug therapeutics. Although it does not 

attack the amyloid deposition directly, it could be beneficial in halting the 

neurodegenerative aspects of AD by promoting effective clearance and degradation of Aβ. 
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Figure 6 Diagram showing the perpetual “death” cycle initiated by activated microglia or neuronal damage. 
Intervention in this cycle is a therapeutic strategy that has been shown to alleviate neuronal damage and 
cognitive deficits associated with it.  

 
(from Block et al. Nature Reviews Neuroscience 8, 57  69 January 2007) 

 

Triptolide 

 
The drug being tested in this study is a major constituent of the Chinese herb, 

Tripterygium wilfordii Hook F, called Triptolide. It is a diterpenoid triepoxide and has 

structural similarities with steroids (see figure 7). The rationale for choosing such a drug 
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can be traced to previous studies involving Triptolide being used to treat rheumatoid 

arthritis, an inflammatory disorder, and some cancers through its antiangiogenic properties 

(He, Liu et al. 2009). With the recent discovery that Alzheimer’s disease brains display 

aberrant expression of cell cycle related proteins such as the cyclin-dependent kinases 

(CDKs), it was hypothesized that the use of anti-cancer drugs may have some effect in 

alleviating AD symptoms or even attenuates some pathology, including APP processing. 

For instance, treatment of APP/PS1 mice with indirubin, another Chinese herbal medicine 

for cancer, had alleviated AD pathologies including Aβ plaque load. It was later discovered 

through X-Ray crystallography that indirubin can bind to and inhibit CDK-2, eliminating 

its effects from over expression in diseased neurons. In the literature, Triptolide has been 

reported to suppress inflammation and cartilage destruction, inhibit prostaglandins via 

inhibition of cyclooxygenase (COX)-2, and reduce nuclear factor kappa B(NFκB) 

expression in vivo  (Lin, Liu et al. 2007). Triptolide has also been shown to inhibit the 

growth and metastasis of solid tumors through apoptosis induction and the reduction in 

expression of several cell cycle related molecules (Yang, Chen et al. 2003). In this same 

study, it proved to be more effective than conventional anti-tumor drugs such as 

adriamycin and cisplatin at inhibiting tumor cell proliferation. One of the most important 

effects of Triptolide related to Alzheimer’s disease was reported in 2008 in the Journal of 

Neuroimmunology. Triptolide inhibited the production of tumor necrosis factor-α (TNF-α) 

and interleukin-1β (IL-1β), both inflammatory cytokines known to be produced upon 

amyloid-β1-42 stimulation of neuronal cells (Jiao, Xue et al. 2008). This role of Triptolide is 

important because it is believed that the progression of Alzheimer’s disease can be halted if 
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chronic activation of the neuronal glial cells such as microglia and astrocytes can be 

inhibited or reduced. Previous work in this laboratory has tested many other Chinese 

herbal anti-cancer agents and some experimental agents developed for specific inhibition 

of certain neural processes. These include retinoic acid, a metabolite of vitamin A, 

indirubin, lupeol, both anti-cancer agents, and the CXCR-2 antagonist SB225002. CXCR-2 

is a chemokine responsible for many inflammatory mechanisms in the CNS. All of these 

drugs so far, have been proven to be beneficial in attenuating AD pathologies, such as APP 

processing and tau hyperphosphorylation, and able to rescue memory deficits in our AD 

mouse model as evidenced in the Morris Water maze acquisition test. The dose of 40µg/kg 

was decided as the appropriate dose to administer to the mice after carefully searching the 

literature and finding a study that administered varying concentrations of Triptolide to 

mice in order to discover its effects in arthritis (Lin, Liu et al. 2007). The effects of 

Triptolide were most prominent at a concentration of 32µg/kg. This corresponded to 0.625-

2.5% of LD50 for Triptolide (1.278mg/kg). There was no evidence of drug toxicity and no 

viscera damage. Even more, several studies characterizing the pharmacological toxicology 

of triptolide in mice indicated a safe dose as 0.03 mg/kg (Xu, Pan et al. 2008). Triptolide 

can cross the blood brain barrier fairly easily due to its lipophilic character and size (Wang, 

Liang et al. 2008). 
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Figure 7 Structure drawing of the triptolide molecule. Its four rings are homologous to corticosteroids, thus, 
it has similar effects in immunosuppression. 

 

(figure from  http://www.asiaandro.com/1008-682X/1/121f1.jpg, Wang et al, 1999) 

 

 

Figure 8 Mechanisms of the neuroprotective effects of triptolide. Overactive microglia in the CNS can lead 
to chronic release of cytokines and other inflammatory mediators which can kill dopaminergic neurons. 
Triptolide, aka T10, can inhibit the overactivation of microglia resulting in inhibition of the release of 
inflammatory cytokines, free radicals, NO, and Ca2+ overload.                                                                                                                   
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(figure from Wang, Liang et al 2008) 
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Materials and Methods 

 

 

Transgenic Mice and Triptolide treatment. There are many different mouse models 

available for the study of Alzheimer’s disease. For this study, we utilized APP/PS1 double-

transgenic mice from The Jackson Laboratory [strain name, B6C3-Tg (APPswe, 

PSEN1dE9)85Dbo/J; stock number 004462]. This particular strain of mice expresses a 

mutant chimeric mouse/human APP gene with Swedish mutations at K595N/M596L sites. 

There is also a presenilin 1 (PS1) human mutant with the exon 9-deleted variant. This 

variant is under the control of mouse prion promoter elements that directs the expression of 

these transgenes mainly to neurons of the CNS. The APP/PS1 mice were maintained as 

double hemizygotes by cross breeding with wild-type mice with a background strain of 

B6C3F1/J (stock number 100010), also from The Jackson Laboratory. To ensure proper 

genotype before each study, tail biopsies and PCR analysis of genomic DNA were 

performed. All animals were housed in the animal care facility at Virginia Commonwealth 

University medical campus and are in accordance with standard animal care protocols. 

Five month old wild-type mice and APP/PS1 mice were randomly assigned into four 

groups: untreated wild-type mice, treated wild-type mice, untreated APP/PS1 mice, and 

treated APP/PS1 mice. The treated groups received 40µg/kg of the drug Triptolide (Sigma, 

T3652), which was dissolved in normal saline with 5% DMSO in saline (vehicle). They 

were injected intraperitoneally three times weekly at 40µg/kg. The control groups received 
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an equal volume of 5% DMSO. Treatment of drug and vehicle control lasted 

approximately 8 weeks. The dose and regimen of treatment were based on previous reports 

describing effective therapeutic doses using Triptolide in mice and characterization of the 

pharmacokinetics involved (Blanchard, Moussaoui et al. 2003; Lin, Liu et al. 2007). The 

rationale for starting drug treatment at 5 months of age is based on previous reports that 

APP/PS1 mice of this particular strain begin to accumulate Aβ plaques as early as 5 

months of age. Although the expression of the mutant forms of these genes do not 

necessarily accurately describe the cases in sporadic late-onset AD, the lesions seen in all 

cases point to a final common pathway of pathologies that all sufferers of AD develop, 

human or mouse.  

 

Morris water maze test. After the treatment with Triptolide for 8 weeks, the memory and 

spatial learning was evaluated using the Morris water maze test (Morris 1984). The maze 

itself consists of a 120 cm diameter X 50 cm height circular and galvanized water tank. 

The area of the tank was divided into four equal quadrants and made opaque by the 

addition of milk powder. The water temperature was adjusted to 24 ± 1°C. An escape 

platform of 10 cm diameter was placed in one of the quadrants and submerged 2 cm below 

the water surface and at least 30 cm away from the side wall. Throughout the experiment, 

the platform was kept in the same quadrant. The mice were each gently placed in the maze 

always facing the tank wall, and were required to find the platform using only distal spatial 

cues in the testing room. For each trial, a different starting position was used. The mice had 

120s to find the platform and once they found it they were allowed to remain on the 
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platform for 10s. Then, the mice were taken out, dried, and placed in a separate cage for 

~60 minutes before the next trial. If a mouse failed to find the platform within the allotted 

120s, the experimenter assisted the mouse and subsequently allowed to stay on the 

platform for 10s. Between the trials, the water was stirred to erase olfactory traces of the 

previous mice.  Each animal was trained for four trials per day for five consecutive days to 

locate and escape onto the platform. Their spatial learning scores was measured as escape 

latency in seconds and recorded after each trial.  In order to assess the memory 

consolidation, a probe trial was conducted two days after the five day acquisition tests. 

During this trial, the platform was removed and the mice were allowed to swim freely in 

the tank. Time spent in the quadrant that had the platform during the acquisition tests was 

taken to indicate the degree of memory consolidation. All time measurements were done 

using a stopwatch by an experimenter blinded to which experimental group to which each 

animal belonged.  

 

Immunohistochemistry. After testing the spatial and learning memory of the mice, the mice 

were anesthetized with an intraperitoneal injection of ketamine (0.05 mg/kg) and perfused 

with PBS and subsequently 4% paraformaldehyde in PBS. The brains were removed and 

placed in 70, 96, and 99% ethanol solutions, respectively, for 2 hour intervals in order to 

dehydrate the brains completely. The brains were then left in xylene overnight and 

subsequently embedded in paraffin. The paraffin blocks were then sectioned horizontally 

by a microtome at 10µm. The sections were placed in a warm water bath and mounted onto 

SuperFrost Plus (Menzel-Glazer) glass slides. Sections were placed in 40° C for one hour 
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before being rehydrated and stained. Procedures for immunohistochemical staining were 

performed using coronal brain sections. The sections were deparafinned, rehydrated in 

various intervals of xylene and ethanol, and endogenous peroxide quenched with hydrogen 

peroxide [1% (v/v) in methanol]. They were then placed in 10mM sodium citrate buffer 

(pH 6) and microwaved for 15 minutes. After cooling to room temperature, they were 

incubated in blocking buffer [10% (v/v) goat normal serum (Millipore Bioscience 

Research Reagents) in PBSA containing 0.1% (v/v) Triton X-100 (Sigma)] for 60 minutes.  

Adding the appropriately diluted antibodies overnight at 4° C followed the blocking.  

 

Histochemistry. The paraffin-embedded brain sections were first deparafinned and 

rehydrated in various xylene and ethanol solutions following this protocol: 15 minutes 

xylene I; 15 minutes xylene II; 5 minutes 100% ethanol; 5 minutes 100% ethanol; 5 

minutes 95% ethanol; 5 minutes 85% ethanol; 5 minutes 70% ethanol; 5 minutes 50% 

ethanol; 5 minutes 30% ethanol; store in deionized water until ready for development. 

Subsequently, the sections were stained for the presence of Aβ plaque deposits using the 

Campbell-Switzer silver staining method (NeuroScience Associates). A detailed protocol 

for using this stain was generously provided by Dr. Bob Switzer of NeuroScience 

Associates in Knoxville, TN. The procedure begins after the rehydration of the brain 

sections by placing the sections in 2% ammonium hydroxide solution and shaking for 5 

minutes then placing in deionized water for 1 minute twice. Then, the sections are covered 

and placed in the SPC solution, a pyridine silver solution for the induction of nucleation 

sites, for 40 minutes while gently stirring. After the 40 minutes, the sections are placed in 
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1% citric acid solution for 3 minutes while shaking. Subsequently, the slides are placed in 

4.99 pH acetate buffer while the developing solution is prepared. The developing solution 

consists of making three separate solutions and then mixes them together to form the ABC 

solution. Solution A consists of 5g of sodium bicarbonate dissolved in 100mL of deionized 

water. Solution B consists of 0.2g of ammonium nitrate, 0.2g of silver nitrate, and 1.0g of 

silicotungstic acid all dissolved in 100mL of deionized water. Solution C consists of taking 

20mL of solution B and adding 140µL of 37% formaldehyde. All three solutions are mixed 

and stirred well. This ABC solution is then added to the brain sections, making sure to 

completely cover the brain tissue, and then incubated at room temperature until the plaques 

are developed. Once the desired results are obtained, the brain slides are washed in 4.99pH 

acetate buffer for 3 minutes. They are subsequently washed in deionized water for 30 

seconds, then a 0.5% thiosulfate buffer for 45 seconds, and then deionized water again for 

2 minutes. The slides are then available for additional staining or to be mounted.  

 

Image Analysis: Images for the DAB staining and Campbell-Switzer staining were taken 

with a Nikon TE2000-E inverted microscope, whereas immunofluorescent images were 

aquired with a Nikon TE2000-U confocal microscope under 40x oil immersion objective 

with numerical aperture (NA) 1.4, zoom 1.6. Fluorochromes were excited using a 488nm 

argon laser for FITC and a 543 nm helium-neon laser for Cy3, and the detector slits were 

configured to minimize any crosstalk between the channels.  
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Stereology: The stereological setup consisted of an Olympus BH-2 microscope (Olympus 

Life and Material Science Europe) with a high numerical aperture (NA 1.40) and oil 

immersion 100x objectives. This allows focusing in a thin focal plane inside a thick 

section. A camera transmits the image to a monitor on which a counting frame is 

superimposed using the computer-assisted stereological CAST-GRID software 

(Visiopharm). A motorized automatic stage was used to control movement in the x-y plane 

via a connected joystick. Movement in the z axis was done manually with the focus button 

on the microscope, and the distance between the upper and lower surfaces of the section 

and the height of the dissectors were measured with a Heidenhain microcator (model VRZ 

401) with a precision of 0.5 µm. The number of Aβ plaques in the hippocampal and 

cortical regions were counted using the optical fractionator method of unbiased 

stereological cell counting techniques. Aβ plaques or cells were sampled in counting 

frames of 644-988 µm2 [a(frame)] moved in x and y steps of 100 x 100 µm [a(step)]. The 

area sampling fraction (asf) was calculated as a(frame)/a(step). The thickness sampling 

fraction (tsf) was calculated as the height of the optical dissector probe (h) (8 or 10 µm) 

divided by the average height of the sections (t) (tsf=h/t). Aβ plaques were counted using a 

20x immersion lens. Total Aβ plaque or cell number (,) was estimated using the following 

equation: ,=Q- x 1/tsf x 1/asf x 1/ssf, where Q- is the number of cells counted, and ssf is 

the section sampling fraction. In the case of clusters of Aβ plaques, each cluster was 

counted as one plaque or cell and identified by the most clearly defined nucleus. 

Coefficients of error and variation were calculated as described previously (Wirenfeldt, 

Dalmau et al. 2003). The same sections that were sampled for number estimates were used 
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to estimate volume of Aβ plaques in cortical or hippocampal regions. The system software 

superposed a point grid at random over low-power (2.5x) magnified images of each 

section. Total reference volume (Vref) was estimated using the Cavalieri-point counting 

method (Gundersen and Jensen 1987), based on the sum of points that hit on each 

reference space, a(p) is the area per point on the grid, t is the mean section thickness (in 

millimeters), and k is the sampling interval. The same a(p) was used for estimating volume 

for both the cortical and hippocampal regions. The densities of Aβ plaques (number per 

cubic millimeter) were calculated by dividing the number counted by the total volume 

sampled of each reference space. The volume of sampled reference space was the number 

of dissectors multiplied by the volume of one dissector.  

 

Western blot analysis. Brain tissues were homogenized in TBS (20mM Tris-HCl buffer, 

pH 7.4, 150mM NaCl) containing several protease inhibitors such as, 0.5mM 

phenylmethylsulfonyl fluoride, 20µg/mL aprotinin, 20µg/mL leupeptin, 20µg/mL 

pepstatin, and 1mM EDTA. Approximately, there was 0.150g of brain tissue per 2 mL of 

TBS buffer. The brain homogenates were briefly sonicated and subsequently centrifuged at 

15,000 x g for 30 minutes. In order to determine protein concentration, the BCA protein 

assay (Pierce) was performed. The assay results were then used to determine proper 

loading amount. For each gel, 10µg of brain SDS supernatants were loaded in each well 

and run on 12% SDS polyacrylamide gel. The proteins were transferred at 300mA for 2 

hours to a polyvinylidene difluoride membrane (BioRad). After transfer, the membranes 

with the newly aquired proteins were incubated for at least 4 hours or overnight in 4°C 
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with specific antibodies to the proteins of interest. After incubation, the membranes were 

washed twice in 0.1% tween 20/TBS for 5 minutes. Subsequently, the membranes were 

then incubated at room temperature with the corresponding HRP-labeled secondary 

antibody for 1 hour (concentration always 1:2000). The ECL system was used for 

detection of labeling (GE Healthcare). This entailed placing radiographic film over the 

exposed membrane in a dark room and then developing it in a Kodak film developer. To 

ensure equal loading, β-actin antibody was used in the same procedure outlined above at 

concentration of 1:5,000. The observed bands were then analyzed using densitometric 

software (Scion Image). The following antibodies were used for western blot analysis: 

rabbit polyclonal anti-phosphorylated (p)-CDK5 (Ser 159) (1:500; Santa Cruz 

Biotechnolgy), mouse monoclonal anti-CDK5 (1:500; Santa Cruz Biotechnology), rabbit 

polyclonal anti-p-tau (Ser 404) (1:300; Santa Cruz Biotechnology), rabbit polyclonal anti-

p-GSK3β (Ser 9) (1:500; Santa Cruz Biotechnology), rabbit polyclonal anti-p-GSK3α/β 

(Tyr 279/Tyr 216) (1:500; Santa Cruz Biotechnology), rabbit polyclonal anti-GSK3β 

(1:500; Santa Cruz Biotechnology), mouse monoclonal anti-p-APP (Thr 668) (1:500; Cell 

Signaling Technology), rabbit polyclonal anti-APP-C-Terminal Fragments (CTFs) 

(1:3000; Sigma), mouse monoclonal anti-β-actin (1:5,000; Sigma), mouse monoclonal 

anti-GFAP (1:500; DakoCytomation).  

Iba-1, BACE1, PS1 

 

Statistical analysis. Presented data are expressed as the mean ± SEM and the analyses were 

performed using a two-way ANOVA followed by Fisher’s least significant difference post 
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hoc analysis to identify effects deemed to be significant. Differences were deemed 

significant at p < 0.05.
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Results 

 

 

Triptolide treatment prevents Aβ plaque accumulation in APP/PS1 mice 

Triptolide has been shown in the literature as a potent therapy for many cancers and 

rheumatoid arthritis but the effects on amyloid accumulation in APP/PS1 mice has not 

been characterized. After administration of triptolide intraperitonneally for 8 weeks on 5 

month old APP/PS1 mice and wild type littermates, the results in figure 9 show that 

triptolide treatment substantially decreased the amount of Aβ plaque accumulation in 

APP/PS1 mice compared to vehicle treated APP/PS1 mice. The areas observed include the 

frontal cortex and the hippocampus, a region that is involved in memory and learning. 

Stereological analysis also portrays a significant decrease in the amount of Aβ plaque 

levels. Plaque number, average volume, and area occupied by the amyloid plaques were all 

reduced in both the frontal and hippocampal brain regions of the APP/PS1 mice. Also, the 

vehicle treated APP/PS1 mice had no significant effects when compared to untreated mice 

of the same genotype and age (data not shown). These results support the idea that 

triptolide may be a possible therapeutic agent for inhibiting amyloid plaque deposition. A 

caveat to these results is that out of three samples subjected to amyloid staining and 

stereological analysis, one set of samples did not show a decrease in Aβ levels, but rather 

an increase in plaque accumulation. The reason for the antithetical result has yet to be 

determined.   
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Triptolide does not inhibit APP processing 

The current knowledge of amyloid processing indicates that APP plays a central 

role in the pathogenesis of plaque accumulation. APP CTFs are an early biomarker for the 

diagnosis for AD (Sergeant, David et al. 2002) and are a key step in the processing of APP. 

Western blot analysis using an anti-CTF antibody was used to determine whether APP was 

affected by the treatment with triptolide. This particular antibody recognizes the full-length 

APP protein as well as the CTFs. As shown in figure 10, we observed that APP expression 

is not changed between vehicle and drug treated mice. Interestingly, the CTFs were 

enhanced in the triptolide treated mice when compared to wild type. Also, the vehicle 

treated APP/PS1 mice did not show a significant difference in APP or CTF expression 

when compared to untreated mice of the same age (data not shown). To further explore the 

affects of triptolide on APP processing, an anti-BACE1 antibody was used to see whether 

the beta secretase enzyme was differentially expressed. Based on the western blot data in 

figure 10, it appears that BACE1 levels were not altered between the drug and vehicle 

treated groups. In keeping with the exploration of APP processing, an anti-phospho-APP 

antibody was used to see if the phosphorylation of the APP protein was affected in the 

drug treated mice. The phosphorylation of APP at Thr668 is important in the processing of 

this protein to cleavage and Aβ oligomer formation (Lee, Kao et al. 2003) and 

neurodegeneration (Chang, Kim et al. 2006). Again, as shown in figure 10, no significant 

change was seen across the group. The role of hyperphosphorylated tau is important when 

considering the clinical manifestations of AD. In this study, it was particularly difficult to 

obtain data that was consistent in showing whether tau was hyperphosphorylated or not. 
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Consequently, no data is presented that shows tau hyperphosphorylation in the APP/PS1 

mice even though it has been well documented that these mice exhibit excessive 

phosphorylation at several tau epitopes (Kurt, Davies et al. 2003). Nevertheless, according 

to the amyloid hypothesis, the role of tau hyperphosphorylation in relation to memory loss 

appears to occur downstream of plaque formation and deposition which leads many to 

believe that its role in neurodegeneration is secondary to amyloid processing. This is, 

however, a very much debatable area in AD research and it should be emphasized that 

there is no definite consensus on how the mechanistic cascade of AD plays out.  Kinases 

known to be implicated in AD include CDK5 and GSK3β. These are involved in tau 

hyperphosphorylation (Singh, Grundke-Iqbal et al. 1994; Hartigan and Johnson 1999) and 

APP phosphorylation (Aplin, Gibb et al. 1996; Iijima, Ando et al. 2000). According to 

figure 10, observing the activity of CDK5 and GSK3β, we can conclude that the 

administration of triptolide has no effect on the enzyme activity or expression levels. The 

expression remained unchanged between drug treated APP/PS1 mice and vehicle treated 

APP/PS1 mice. Assessing the activity of GSK3β, the results were similar to that of CDK5. 

The levels of protein expressed in drug treated versus vehicle treated APP/PS1 mice were 

unchanged, indicating that triptolide has no effect on changing the activity of GSK3β. 

Together, the data concludes that the activities of the major kinases of tau and APP 

processing are unchanged by triptolide treatment.   

 

Triptolide treatment reduces the number of glia associated with Aβ plaques in 

APP/PS1 mice   
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It has been well documented that APP/PS1 mice as well as AD patients exhibit 

enhanced reactivity of glial cells such as microglia and astrocytes. These glial cells are in 

and around Aβ plaques and appear to be the results of an inflammatory reaction caused by 

these diffuse plaque depositions. This is very characteristic of inflammatory mechanisms 

that occur when injury presents itself in the brain (McGeer and McGeer 1999). Triptolide 

has been shown in vitro to inhibit inflammatory cytokines such as IL-1β and TNF-α in 

response to amyloid oligomer stimulation (Jiao, Xue et al. 2008). The activated microglia 

was visualized by immunohistochemical techniques using an Iba-1 antibody. Double 

staining of Iba-1 and amyloid plaques shows that activated microglia are localized in and 

around the deposited plaques. In figure 11, there is a significant increase in Iba-1 

immunoreactivity around the amyloid plaque in the vehicle treated APP/PS1 mouse brain 

as compared to the triptolide treated APP/PS1 mouse brain. However, it is difficult to 

determine if the amount of microglial cells in the drug treated APP/PS1 mouse brain is the 

result of a significant inhibition by triptolide or from the significant decrease in Aβ plaque 

deposits.  

The activated astrocytes were visualized using immunohistochemical techniques 

using a GFAP antibody. Similar to the microglia, the double staining of astrocytes and Aβ 

plaques showed that the astrocytes indeed were in and around the plaque deposits. The 

amounts of activated astrocytes around the plaques were significantly reduced in the 

triptolide treated APP/PS1 mouse brain when compared to the vehicle treated APP/PS1 

mouse brain. This is similar to the microglia results but similar conclusions cannot be 

drawn from the data since astrocyte migration activity differs from microglia (Pihlaja, 
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Koistinaho et al. 2008). Thus, it is still unclear whether the reduction in glial activation is a 

result of triptolide’s action as an immunosuppressant or from the substantial decrease in 

amyloid plaques. 

 

 

Triptolide treatment rescues learning and memory deficits in APP/PS1 mice 

The mouse model used in this study was an APP/PS1 double transgenic mouse line 

that is well characterized. This model has been consistently reported to develop Aβ plaques 

associated with cognitive deficits as the mice age (Trinchese, Liu et al. 2004). Based on the 

Morris water maze test, the results of our investigation in figure 12 show that after 

treatment with triptolide, the APP/PS1 mice exhibited a substantial improvement in 

memory as proven by the decrease in escape latency across trials. Improvement of memory 

retention in the drug treated APP/PS1 mice was also evidenced by the probe trial. In 

contrast, the data illustrate that the vehicle treated APP/PS1 mice portrayed an inability to 

acquire the learning and memory exhibited by wild type and triptolide treated mice. It 

should be noted that the deficits in the acquisition and probe trial were not attributable to 

different swim speeds since APP/PS1 mice and wild type mice exhibit similar swimming 

abilities. Based on these results, it can be concluded that triptolide is beneficial in retaining 

cognitive abilities in APP/PS1 mice. 
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Figure 9 Triptolide treated APP/PS1 mice show reduced levels of Aβ deposits when compared with 

vehicle treated APP/PS1 mice. A represents Campbell-Switzer staining in the frontal cortex of 
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APP/PS1 mice treated with vehicle (left) and triptolide (right). B represents Campbell-Switzer staining 

in the frontal cortex of APP/PS1 mice treated with vehicle (left) and triptolide (right). C represents 

stereological quantification of Aβ plaque number in the hippocampus. D represents stereological 

quantification of Aβ volume in the hippocampus, all described in the Materials and Methods. Values 

from multiple images of each section were averaged per animal per experiment. Data are mean ± SEM 

from three mice per genotype. *p<0.05 versus vehicle treated control APP/PS1 mice. 
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Figure 10 Triptolide treatment had no change on the expression of APP and did not reduce the amount of 
CTFs. Western blots for APP, APP-CTFs, phosphorylated-APP, BACE1, PS1, phosphorylated GSK3α,β 
(Tyr 216), phosphorylated CDK5 (Ser 159), CDK5, and β-actin. 
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Figure 11 Triptolide treatment appears to cause a reduction in microglial reactivity in the APP/PS1 mice 
brains. A represents Campbell-Switzer staining for Aβ and immunostaining of Iba-1 in the hippocampal CA3 
region. Wild-type (WT) and APP/PS1 mice with vehicle or triptolide are shown. There are less activated 
microglia in the triptolide treated APP/PS1 mouse brain than in the vehicle treated APP/PS1 mouse brain. B 
represents Western blot analysis of Iba-1 expression among the four genotypes. A slight reduction can be 
seen in the triptolide treated versus vehicle. 
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Figure 12 Triptolide treatment appears to cause a reduction in astrocyte reactivity in the APP/PS1 mice 
brains. A represents Campbell-Switzer staining for Aβ and immunostaining of GFAP in the hippocampal 
region. Wild-type (WT) and APP/PS1 mice with vehicle or triptolide are shown. There is less activated 
astrocytes in the triptolide treated APP/PS1 mouse brain than in the vehicle treated APP/PS1 mouse brain. B 
represents Western blot analysis of GFAP expression among the four genotypes. There appears to be no 
significant reduction in the triptolide treated brain versus the vehicle treated brain. 
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Figure 13 Treatment of APP/PS1 mice with triptolide results in attenuation of AD-type spatial memory 
deterioration. A represents acquisition of spatial learning in the Morris water maze hidden platform task. 
APP/PS1 mice treated with triptolide displayed learning similar to wild-type mice; while vehicle treated 
APP/PS1 mice displayed learning deficits. Latency score represents the time taken to escape to the platform 
from the water. Lines represent mean ± SEM from six to eight mice (indicated) per group. B represents the 
memory test in the Morris water maze probe trial without the platform. The deficits in the vehicle treated 
APP/PS1 mice were improved in the triptolide treated APP/PS1 mice. Error bars represent mean ± SEM from 
six to eight mice (indicated) per group. *p< 0.05, **p< 0.01 versus vehicle treated control APP/PS1 mice. 
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Discussion 

 

 

As stated above, triptolide’s therapeutic potential has been exploited for the use in 

rheumatoid arthritis and certain cancers. Its structure has similar homology to 

corticosteroids and thus is a potent immunosuppressant. This aspect of immunosuppression 

is believed to play a beneficial role in the inflammatory mechanisms of AD and help bring 

the patient’s immune system to a state of effectively clearing amyloid plaques from the 

CNS. This is further supported by several epidemiological studies suggesting a potential 

benefit from using anti-inflammatory drugs on AD patients (Akiyama, Barger et al. 2000). 

Inflammatory processes in the CNS become detrimental to the AD patient. This is believed 

to be caused by activated glial cells that target senile amyloid plaques for degradation but 

in the process can damage neurons in and around the plaque deposits. Therefore, a possible 

solution for treatment in conjunction with inhibiting plaque formation would be to inhibit 

glial cell activation. Certain drugs have shown promise as treatments for AD and clinical 

trials are currently being done to study the effectiveness of such anti-inflammatory 

treatment. However, the mechanisms of action for this avenue of therapy still remains 

elusive since cytokines released from glial cells have neurotrophic as well as neurotoxic 

effects (Richartz, Stransky et al. 2005). This study has indicated that treatment of APP/PS1 

double transgenic mice with triptolide can attenuate amyloid plaque deposition which 

concordantly will halt deficits in learning and memory. It has been reported that the effects 
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of anti-inflammatory drugs may not act via inhibition of prostaglandins but actually 

reducing the plaque burden on the CNS (Cirrito and Holtzman 2003). The aspect of 

cognitive deficits is the chief clinical manifestation of AD and arguably the central target 

of any drug therapy. Again, triptolide’s effect on the immune system is a possible 

explanation for the halt of neurodegeneration and rescue of spatial learning and memory 

exhibited in treated mice. Of the two chief protein aggregates, only amyloid plaque 

deposition was observed to have been attenuated by treatment with triptolide. The 

Campbell-Switzer stain is a reliable silver stain for amyloid plaques in brain sections. 

Expression of the APP protein was not changed among the triptolide treated and vehicle 

treated APP/PS1 mice which indicates that triptolide had no effects on APP gene 

transcription. However, there was an elevated presence of CTFs, the cleavage products of 

alpha, beta, and gamma secretases. This clearly indicates that cleavage of the APP protein 

is not hindered and in fact may be enhanced at a specific point along the processing. The 

preclusion of plaques from the histological staining of the brain sections of APP/PS1 mice 

treated with triptolide can be explained by an enhanced clearance and degradation of 

plaque deposits. However, the activity of gamma secretase can also be part of the 

explanation since this enzyme is still poorly understood in its function. An enhanced level 

of inflammatory mediators in the APP/PS1 mice have been shown to increase BACE1 

activity in the hippocampus and result in an increase in CTFs (Blasko, Beer et al. 2004). 

Also, gamma secretase has been shown to increase in expression in response to activated 

glial cells from brain injury (Nadler, Alexandrovich et al. 2008). In keeping with the idea 

that inflammation is heavily involved in the pathogenesis of AD, it should be noted that 
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certain benefits can arise from inflammatory mechanisms. This depends on which 

mediators are involved, the time the disease develops, and whether the response is chronic 

or acute inflammation (Sastre, Walter et al. 2008). Microglia can clear amyloid plaques 

through phagocytosis and release elements of neuroprotection such as glia-dervied 

neurotrophic factor (GDNF) (Liu and Hong 2003). Interestingly, it has been reported that 

microglia already activated from newly formed amyloid plaques can restrict the growth of 

the plaques if further activation of microglia is inhibited (Meyer-Luehmann, Spires-Jones 

et al. 2008). Since triptolide has been shown to inhibit inflammatory cytokine release, it is 

certainly possible that the clearance of amyloid by glial cells and the formation of new 

plaques keep each other in “balance” and reach a steady state of formation and clearance. 

Further testing would be needed to support the hypothesis of a reduction in microglia 

activation with triptolide treatment.  With the gamma secretase complex, the situation 

becomes even more unclear. A recent study has shown that some anti-inflammatory drugs 

can directly modulate the activity of gamma secretase (Czirr and Weggen 2006). The 

gamma secretase is composed of four essential membrane proteins: aph-1, pen-2, nicastrin, 

and presnilin (PS) (Sastre, Walter et al. 2008). It has been reported that activated glial cells 

have an increase in expression of presenilin (Nadler, Alexandrovich et al. 2008) but it is 

still unknown whether this can affect the glial cell function. Further, in cases of familial 

AD (FAD), where the patient displays amyloid plaques earlier than usual, there is a 

positive correlation with an increase in inflammatory processes. Again, it is unclear 

whether the increase in presenilin promotes neuroinflammation through other pathways or 

whether it promotes neuroinflammation through a substantial increase in amyloid plaque 
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deposition (Sastre, Walter et al. 2008). Using figure 7 again, and based on the results of the 

experiment, there are a few mechanisms that triptolide could be exploiting in exerting its 

beneficial aspects in the APP/PS1 mice. Triptolide is very much possibly interacting at the 

specific receptors for microglia activation. It has been shown to inhibit specific cytokine 

production and NO production, thereby inhibiting microglial receptor activation. However, 

no evidence has shown that superoxide formation is inhibited and this is believed to be of 

paramount importance in glial cell activation. The reduction in cytokine production will 

also inhibit glutamate and Ca2+ excitotoxicity, as stated in the introduction, and can 

therefore reduce cell death. While these mechanisms are plausible for explaining an 

inhibition of neuronal cell death, thereby enhancing learning and memory in the APP/PS1 

mice, it does not provide an adequate explanation for a reduction in amyloid plaque 

deposition.   

This study also attempted to investigate the prevalence of tau hyperphosphorylation 

among the four genotype mice tested. Unfortunately, the western blot analysis of brain 

homogenates yielded conflicting and inconsistent data (data not shown). Therefore, it was 

determined that the study would forego any further attempt to assess the reason for this as 

it seemed beyond the scope of this project. The absence of any tau hyperphosphorylation 

data appears to be inconsequential when measuring the cognitive deficits in the Morris 

water maze although many believe that it is closely linked with neuronal damage. It should 

be further explored as to why this pathological hallmark of AD did not manifest itself in 

these groups of mice or some technological error occurred that is responsible for the 

conflicting data. When it comes to the major kinases involved with tau 
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hyperphosphorylation (Lovestone and Reynolds 1997), we see that there appears to be no 

change between the triptolide treated and vehicle treated APP/PS1 mice. The expression of 

total CDK5 remained constant throughout the four genotypes, indicating no change in 

expression of the inactivated form of CDK5, phosphorylated CDK5. GSK3 also showed no 

change.  

Since triptolide has been shown to inhibit inflammatory cytokines and chemokines, 

it was expected that glial activation might be reduced in the diseased CNS to a 

neurotrophic level. And indeed the APP/PS1 mice treated with triptolide did appear to 

exhibit a decrease in glial number in cortical and hippocampal regions. It is unclear 

whether the decrease in glial activation is the result of a decrease in Aβ plaque deposits or 

whether triptolide’s anti-inflammatory properties inhibited the activation directly. 

Microglia change has so many parameters including morphology, number, and cytokine 

production. But, the appearance of a decrease in glial number supports an anti-

inflammatory effect and thus can be beneficial and effective in neurodegenerative 

disorders, such as AD. 

This study demonstrates that administration of triptolide can reverse or inhibit 

spatial learning and memory deficits associated with APP/PS1 mice. The cognitive 

dysfunction associated with these mice is a result of an accelerated production of amyloid 

plaques and loss of functional synapses (Chen, McPhie et al. 2000). Although it is clear 

that triptolide attenuated the amyloid plaque accumulation in brains of APP/PS1 mice 

relative to vehicle treated APP/PS1 mice, it cannot be definitively ruled out that triptolide 

exerts its neuroprotective effects through other mechanisms. However, a possible solution 
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rests with the evidence that triptolide has neuroprotective effects on dopaminergic neurons 

which can increase and/or keep intact the ability to release cholinergic neurotransmitters 

that can protect against the cytotoxic effects of Aβ (Wang, Liang et al. 2008). 

This study has provided evidence that triptolide can inhibit amyloid plaque deposit 

and other neuropathologies associated with AD. Also, cognitive deficits associated with 

APP/PS1 double transgenic mice were ameliorated. The long historical use of this Chinese 

herbal derivative has now been characterized in an AD mouse model and hopefully will 

lead to clinical trials where the effects can be further explored in human AD patients.  
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Future Studies 

 

 

The present study has done a lot to answer the question of whether or not triptolide 

can be a beneficial therapeutic for treating Alzheimer’s disease. There is a substantial 

decrease in amyloid plaque deposits and glial activation. Memory and learning abilities 

appeared to be rescued in the drug treated APP/PS1 mice relative to vehicle treated 

APP/PS1 mice. Although these are exciting results, the exact mechanism of triptolide’s 

effects have not been elucidated. A more extensive study of gamma secretase could 

possibly reveal much in how the anti-inflammatory property of triptolide affects its 

activities. A more extensive study of the phagocytic ability of microglia in the dystrophic 

brain treated with triptolide may provide an answer to how the brain can inhibit the 

accumulation of Aβ. This would involve phagocytosis assays and electron microscopy 

studies of brain tissue. A thorough assessment of changes in synaptic integrity using 

drebrin and synaptophysin markers can provide direct evidence for an inhibition of 

neurodegeneration in triptolide treated mice. Further studies of iNOS changes and cytokine 

and super-oxide release in relation to AD and triptolide treatment can explain glial 

activation mechanisms and anti-inflammatory effects of triptolide. And finally, 

administration of triptolide in a much older APP/PS1 mouse model could fully answer the 

question of whether triptolide can attenuate and decrease Aβ accumulation. Complications 

would likely arise when trying to establish a rescue in memory deficits since neuronal 
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death cannot be reversed. Nevertheless, much work remains in fully characterizing 

triptolide’s therapeutic affects and the results presented in this study will perhaps further 

the study of anti-inflammatory drug therapy, an avenue that has proven to be 

neuroprotective and inhibit hallmark pathological symptoms. 
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